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Three-dimensional homogeneous isotropic turbulence at  very high Reynolds number 
R is studied using a variant of the Markovian eddy-damped quasi-normal theory. 
I n  the case without helicity, numerical calculations indicate the development of a 
k-8 inertial range in the energy spectrum and an onset of significant energy dissipation 
at a time t ,  which appears to be independent of the viscosity v as v+O; analytical 
arguments having a bearing on this behaviour, described as an ‘energy catastrophe’, 
are also discussed. The skewness factor (for t > t * ) ,  which increases with R, tends to 
0.495 when R-+co. When helicity is present, the existence of simultaneous energy and 
helicity cascades is demonstrated numerically. It is also shown that the helicity 
cascade inhibits the energy transfer towards large wavenumbers, in agreement with 
preliminary low Reynolds number results of Herring and with the conclusion of 
Kraichnan (1973) based on analysis of the interaction between two helicity waves. 
This inhibition implies a delay of the onset of energy dissipation at zero viscosity. It 
is shown that, whatever the relative rate of helicity and energy injection, a regime is 
attained at large wavenumbers k where the relative helicity tends to zero (with 
increasing k) and helicity is carried along locally and linearly by the energy cascade 
like a passive scalar. In practice, the linear regime is attained when the relative 
helicity is less than about 10 %. The Kolmogorov constants of energy and helicity in 
the inertial range are determined. The impossibility of pure helicity cascades of a type 
conjectured by Brissaud et al. ( 1 9 7 3 ~ )  is demonstrated. Finally it is shown that, 
because of dissipation and non-positive-definiteness of the helicity spectrum, non-zero 
total helicity may appear in the decay of unforced turbulence with zero total initial 
helicity, if the helicity spectrum is not initially identically zero. 

1. lntroduction 
Helicity (U .curl u), which is an inviscid invariant of three-dimensional homogeneous 

turbulence (Betchov 1961; Moffatt 1969), is known to play an important part in the 
generation of magnetic fields (Steenbeck, Krause & Riidler 1966; Moffatt 1970a, b ;  
Frisch et al. 1975; Pouquet Frisch & L6orat 1976). In this paper we are going to consider 

t Present address: Institut de MBcanique de Grenoble, 38041 Grenoble-CBdex, France. 
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the influence of helicity on the dynamics of flows in the absence of magnetic field. We 
shall introduce energy and helicity spectra E(k,  t )  and H ( k ,  t )  such that 

(u2(t)) = 1 O0 E(k,  t )  dk, 

H ( k ,  t )  dk.  

0 

(u(t). curlu(t)) = 6 
It may be shown that lH(k, t )  1 < kE(k, t ) .  

This result follows from the definition of vorticity in the case of a discrete velocity 
spectrum (flow within a box of size L with periodic boundary conditions) and can be 
extended to homogeneous turbulence by letting L become infinite. 

From the conservation of helicity, Brissaud et al. ( 1 9 7 3 ~ )  conjectured on a pheno- 
menological basis two types of cascade: (i) simultaneous energy and helicity cascades 
where the helicity is carried linearly along the energy cascade; (ii) a pure helicity 
cascade towards large wavenumbers with a k -%energy spectrum and no energy transfer. 
Such a helicity cascade would then imply an inverse k-3 energy cascade towards small 
wavenumbers with no helicity transfer. The existence of this type (ii) cascade is, 
however, in some doubt; indeed Kraichnan (1973) observed that, starting from initial 
conditions with maximal helicity [expressed by equality in (1.3)], it was impossible 
to have a direct helicity transfer without any energy transfer since this would violate 
(1.3). In  $ 4 we shall show that, within the framework of the particular scheme adopted 
below, the second type of cascade is in fact impossible. 

In  this paper, we study helical turbulence using a variant of the Markovian eddy- 
damped quasi-normal (EDQN) theories introduced by Orszag (1970) and Leith (1971). 
These theories are characterized by a relaxation time B,,,(t) for triple correlations 
(Kraichnan 1971 a;  Sulem, Lesieur & Frisch 1975), which is here taken to be 

e,,(t) = t / [ l +  (Pk + P P  +P*) tl, (1.4) 

with 

where h is an adjustable constant which may be chosen so as to recover the proper 
value of the Kolmogorov constant. In fact (J. Herring, private communication) the 
EDQN theory characterized by (1.5), and previously used by Pouquet et al. (1975) 
to study the temporal evolution of two-dimensional turbulence, can be considered 
as a simplification of the test-field model (Kraichnan 1 9 7 1 ~ ) .  In  $ 4  we derive the 
relation between the Kolmogorov constant C, and the parameter A, and find that 

h = O.l09C&, (1.6) 

so that we must take h = 0.255 to recover for C, the value 1-76t estimated by 
Kraichnan (1971b). 

t In Kraichnan’s notation the energy spectrum was defined by 

+(uV)) = [ E(k, 4 dk, 

so that we must multiply our Kolmogorov constant by 2-5 to find Kraichnan’s value 1.4. 
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2. Evolution of non-helical turbulence 
The problem of the regularity of solutions of the three-dimensional Euler equations 

(i.e. the inviscid Navier-Stokes equations) has received much attention in the last 
few years (Ebin & Marsden 1970; Kato 1972). There are a t  present various conjectures 
concerning a possible loss of regularity of the solutions of the Euler equations after a 
finite time depending upon initial conditions (Orszag 1976; Brissaud et al. 1973b;  
Lesieur & Sulem 1976). In  Brissaud et al. (19733)  this conjecture is based on the study 
of the Markovian random coupling model (the MRC model; see Frisch, Lesieur & 
Brissaud 1974) applied to the Burgers equation, where it is shown that 

(a )  when v = 0, energy is conserved up to a finite time t ,  a t  which the enstrophy 
(which is in this case defined as the mean value of the square of the velocity gradient) 
becomes infinite; 

( b )  when u + O ,  energy is conserved for t < t ,  and is dissipated a t  a finite rate after 
t ,  (Penel 1975). 

The behaviour described by the two properties (a) and ( b )  will be called an ‘energy 
catastrophe ’. 

Let D(t)  be the enstrophy in the inviscid case and D,(t) the enstrophy in the viscous 
case for the same initial conditions. If one assumes that 

limD,(t) = D(t),  
V 4  

then ( b )  implies (a ) ,  since the energy dissipation rate 2uD,(t) cannot be finite in the 
limit v - t o  unless D,(t) becomes infinite. On the other hand (a )  does not necessarily 
imply ( b ) . t  Furthermore it must be noticed that the existence of a k-4 energy spectrum 
extending to infinite wavenumber when v + 0 implies an infinite enstrophy and also 
a constant energy transfer rate across any arbitrarily large wavenumber. 

In this section we shall investigate the possibility of an energy catastrophe using 
the EDQN theory applied to three-dimensional homogeneous and isotropic turbulence 
without helicity. In  the following sections we shall study how these results are modified 
by helicity. 

The EDQN equation for the energy spectrum E(k, t )  is 

where b3(k, p ,  q) = (p/k)  (xy + 23) is the geometrical coefficient introduced by Kraichnan 
for three-dimensional turbulence (2 ,  y and z being the cosines of the angles opposite 
to sides k, p and q in the interacting triad). This notation is the same as that in Frisch 
et al. (1974). The numerical methods used in this section and in the following ones are 
the same as those in Pouquet et al. (1975). The double integral in (2.2) is calculated 
in the same way as in Leith ( 1  971). Wavenumbers are discretized logarithmically, 

kL = kmin2LIF, L = 0, ..., Lmax, F = 4 ,  (2 .3)  

t In fact, if the EDQN spectral equation is analytically continued to non-integer dimension 
d, it is found numerically that enstrophy blows up at a finite time but energy is nevertheless 
conserved for 2 < d < d,, where d, x 2.03 (Frisch, Lesieur & Sulem 1976). 
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FIGURE 1 .  Temporal evolution of energy spectrum E(k,  t ) ;  no helicity, initial spectrum E(k, 0) 
N k4 exp l - 2 k 2 ) ,  Reynolds number R = 524000. - -, t = 0; -a-, t = 3; - a * - ,  t = 5 ;  ..... , t = 6 ;  
- , t = 8; xxx, t = 15. 

and the largest wavenumber k,,, retained in the numerical calculation must be 
sufficiently large to include the dissipation range characterized by the Kolmogorov 
dissipation wavenumber k,: 

k ,  - @/v3)4, (2.4) 

(2 .5)  
d 
at 

E = ~ ( t )  = - - ( u 2 ( t ) )  = 2~ where 

is the dissipation rate. If kI is the wavenumber characteristic of energy-containing 
eddies, and assuming, for instance, an energy spectrum proportional to dk-9 extending 
from kr to k,, it is easy to show that 

kD/kI  R') (2.6) 

R = (u2(0))*/vkr.  (2.7) 

where the large-scale Reynolds number R is defined as 

In all the calculations to be reported we have taken kmax/kr = 8R2, and checked that 
a further increase in k,,, for a given Reynolds number left the results unchanged; 
moreover it can be seen that all the computed energy spectra (figures 1, 6 and 7) 
include a properly described dissipation range. 

In  figure 1 the time evolution of an initial energy spectrum 

E ( k ,  0 )  = 3 k4exp ( - 2k2) 
32 (")" 
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is reported on a log-log plot. The units are k, for k, (u2(0))-*kF1 for t and (u2(0)) /k ,  
for E(k,  t ) .  The Reynolds number in this numerical experiment is 524000. As can be 
seen a k-8 Kolmogorov inertial range is established at  t = 6 and extends over more 
than three decades. For larger times, the spectrum in the inertial range remains 
proportional to s)k-8. The temporal evolution will then be determined by E ( t )  alone. 
In the numerical calculation one finds 4 6 )  = 0.120, ~ ( 8 )  = 0.103 and ~ ( 1 5 )  = 0-028. 
It follows that the curves for t = 6 and t = 8 are almost identical, while the extent 
of the inertial range at t = 15 has been reduced by a factor of about 1-4. In figure 2 
we have plotted for various times the compensated spectrum kb-*E(k, t ) .  (Log-log 
plots alone are inadequate because they underestimate deviations from power laws.) 
At t = 5, where the Kolmogorov inertial range has not yet been established and where 
the energy spectrum is always rapidly decreasing, the compensated spectrum is sharply 
peaked and only its right end is represented. It can be seen at  t = 8 that the value 
of the compensated spectrum remains constant and equal to 1.76 to within 1 1  yo from 
k = 4 to k = 512. 

Figure 3 shows the energy transfer rate across a wavenumber K :  

n(K,  t )  = T(k,  t )  dk, 1: 
where T ( k , t )  represents the right-hand side of (2.2). For t = 8 ,  n(k , t )  is equal to 
0.085 to within 18 yo from k = 4 to k = 512. In  this experiment the energy dissipation 
rate E is equal to 0.103. 

To improve the results shown in figures 2 and 3, i t  would be necessary to increase 
the Reynolds number, but this would require a lot of computer time; it took 1200s 
on a CDC 6600 machine to compute the evolution of the energy spectrum from t = 0 to 
t = 15. This kind of calculation in Fourier space cannot be performed in the inviscid case 
with conservative numerical schemes (i.e. those which conserve energy and helicity for 
the nonlinear terms) since it is well known that a finite number of modes leads then to 
a k2 absolute equilibrium spectrum (Lee 1952). The influence of helicity on absolute 
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FIGURE 3. Variation of the energy transfer rate ~ ( k ,  1 )  as a function of k for t = 8; 

same conditions as in figure 1. - - -, energy dissipation rate 6. 

equilibrium distributions has been studied by Kraichnan (1973) and Frischet al. (1975). 
It would of course be interesting to integrate the inviscid form of (2.2) with a finite 
number of modes but this would require a parametrization of the interactions with 
the modes not represented. This is a particular case of the very difficult ‘parametriza- 
tion problem’, which has been studied for the two-dimensional EDQN equation by 
Basdevant, Lesieur & Sadourny (1976). 

The compensated spectra in figure 2 exhibit a bump at large wavenumbers. We have 
checked that this pathological effect does not disappear when the Reynolds number 
increases. It is probably due either to the particular closure or to the numerical 
procedure used to solve the master equation (2.2): the bump could be a consequence 
of the fact that the numerical method does not take into account the non-local inter- 
actions, except those corresponding to isosceles triads (Pouquet et al. 1975). These 
non-local interactions are not completely negligible in the inertial range (Kraichnan 
1971 b ) .  This point is extensively discussed in 0 4. 

The formation of a k-0 inertial range in the energy spectrum, which is established 
after t z 5 (as can be seen in figure 2),  is related as follows to the occurrence of an 
‘energy catastrophe’ a t  a finite time t,. 
(a) Following a calculation of Proudman & Reid (1954) in the case of the quasi- 

normal approximation, it can be shown (Lesieur 1973) in the simple case of the Mar- 
kovian random coupling model (Okpp(t) = 19,) that the enstrophy 

satisfies dDldt = +/3,D2, (2.10) 

which implies that D(t) blows up a t  t, = 3/(O,D(O)). In  the more complex case of 
the EDQN theory, we have not succeeded in demonstrating analytically the blow-up 
of enstrophy, but it can be shown (see appendix A) that D(t) satisfies the inequality 

which implies that energy is conserved at least for times smaller than 1*87D-*(0). 

dD/dt < 1*07D*, (2.11) 
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FIGURE 4. Temporal evolution of the total energy (u2(t)); same initial conditions 
as in figure 1.  xxx, R = 128; -.-, R = 813; ....., R = 32800; -, R = 524000. 

( b )  It must be mentioned that the blow-up of enstrophy a t  a finite time can be 
obtained in the framework of the EDQN theory through a modification of O,,(t). 
On changing Okp,( t )  into Olmn(t) ,  where 1 = sup ( k ,  k') ,  m = sup ( p , p ' )  and n = sup (q,  q') 
with 

kt2 = p 2 + q 2 + 2 p q x ,  p'2 = k'+q2+2kqy ,  q'2 = k 2 + p 2 + 2 k ~ z ,  (2.12)-(2.14) 

we get the following inequality: 
dD/dt 2 tD2/3( 1 + 3htD*), (2 .15)  

which shows that enstrophy blows up a t  a finite time t, < (9h+bt )D-*(O)  (see 
appendix A). Such a change in Okp,( t )  can be justified while one is interested in local 
interactions. 

( c )  The numerical integration of (2 .2 )  for very large Reynoldsnumbers does, however, 
show that the rate of energy dissipation increases dramatically after a finite time t* 
of order 5k,'(u2(0))-4 (figure 4), and it is reasonable to infer that, in the formal 
limit of infinite Reynolds number, energy dissipation will still begin at time t , ,  owing 
to a blow-up of the enstrophy. 

Figure 5 shows the time evolution of the skewness factor for various values of the 
Reynolds number: it  can be seen that for a given t ( > t* )  the skewness factor increases 
with Reynolds number and tends to the value 0.495. This value is in good agreement 
with the low Reynolds number value of 0.47 obtained in the direct numerical simula- 
tion of Orszag & Patterson (1972) .  On the other hand, we made low Reynolds number 
calculations using the EDQN theory under the same conditions as in the above-quoted 
numerical simulations and found a skewness factor of 0.39. This .discrepancy between 
the EDQN theory and the direct calculations may be ascribed to the adjustment of 
the parameter h to the Kolmogorov constant, which is justified only when there is 
a Kolmogorov energy cascade, i.e. a t  high Reynolds numbers. It would perhaps be 

7 F L M  81 
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FIGURE 5. Temporal evolution of the skewness factor ; same initial 
conditions as in figure 1. Curves as in figure 4. 

necessary to adjust h in terms of the skewness factor in order to use the EDQN theory 
a t  low Reynolds numbers. (The value 0.39 is, however, in good agreement with 
experimental results reported by Batchelor 1953, p. 118.) 

3. Temporal evolution of helical turbulence 

the helicity spectrum H ( k ,  t )  are (Lesieur 1973) 
When helicity is present the EDQN equations for the energy spectrum E(k,  t )  and 

t Equations similar to (3.1) and (3.2) can also be given for other theories; in appendix B the 
reader will find such a set of equations generalizing Kraichnan’s DIA equations to the helical case. 
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FIGURE 6. Temporal evolution of the energy spectrum E(k , t ) ;  initial energy spectrum 
E(k, 0) N k4exp ( - 2k7, Reynolds number R = 524000, maximal initial helicity. 
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FIGURE 7. Temporal evolution of the helicity spectrum 
H ( k ,  t )  ; same conditions as in figure 6. 

where O,,(t) is defined by (1.4) and 

b , ( k  P ,  d = (244 (z?/ + z3) ,  4, P ,  d = ( P 2 / k d  z b  + Y 4 .  (3.3) 

(3.4) 

We have integrated (3.1) and (3.2) numerically starting with maximal initial helicity, 

H ( k ,  0) = kE(k, 0 ) ,  

and E(k,  0) given by (2.8). The Reynolds number defined by (2.7) is equal to 524000 
as in the preceding section. We decided to use in the helical case the same expressions 
(1.4) and (1.5) for the triple-correlation relaxation time as in the non-helical case. 

7-2 
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Figures 6 and 7 show the evolution of the energy and helicity spectra. It is seen 
that the appearance of an inertial range is delayed roughly by a factor 2. This is 
consistent with the investigation of Kxaichnan (1973), who considered the interaction 
between two helicity waves (Moffatt 1970a, b;  Lesieur et al. 1971; Mazure 1972) and 
showed that there was an inhibition of energy transfer, and dso with low Reynolds 
number DIA calculations by Herring. Figures 6 and 7 clearly establish the existence of 
simultaneous energy and helicity cascades as conjectured by Brissaud et al. ( 1 9 7 3 ~ ) :  

E ( k )  = c,€+k-%, (3.5) 

H ( k )  = CH’Tpdk-4, (3.6) 

where 7 is the helicity dissipation rate; C, and CH are respectively the Kolmogorov 
constants of the energy and helicity inertial ranges. It can be seen in figures 8(a )  
and ( b )  that the compensated spectra k % ~ ( k )  c-8 and kfH(k)  dr-1 remain respectively 
equal (to within 10 yo) to 1.76 and 2.84 from k = 4 to k = 512. The value 2.84 for CH 
will be determined precisely in § 4. It must be noticed that the helicity spectrum obeys 
the same law as the spectrum of a passive scalar carried along by turbulence: since a 
passive scalar obeys a linear equation, its spectrum $ ( k )  is proportional to its injection 
rate a; the usual Kolmogorov arguments applied to $ ( k ) / a  then give $ ( k )  N as-ik-8 
(Oboukhov 1949; Corrsin 1951; Batchelor 1959). We may therefore say that helicity 
cascades linearly. I n  fact, the same phenomenological arguments as those used by 
Brissaud et al. ( 1 9 7 3 ~ )  show that, if one takes the same relaxation rate ,uk for triple 
correlations, one obtains a linear cascade for the helicity spectrum: H ( k )  N q/EE(k). 
When ,uk depends on the helicity spectrum, one might expect the Kolmogorov law to 
be modified by helicity. But since in the linear cascade the relative helicity ~ ( k ) / k E ( k )  
goes to zero when k goes to infinity, helicity has a negligible effect for large wave- 
numbers and cannot modify the k-9 energy spectrum. The situation may be rather 
different if one does not take the same value of ,uk in (3.1) and (3.2). In that case i t  is 
not certain that helicity should cascade linearly. The matter might be clarified through 
study of helical turbulence with the test-field model (Kraichnan 1971a; Sulem et al. 
1975). 

Figure 9 shows the relative helicity H ( k ) / k E ( k ) .  As expected from (3.5) and (3.6), 
it goes to zero for large k .  It will be shown in 5 4 that the existence of simultaneous 
energy and helicity cascades requires H ( k ) / k E ( k )  5 0.1. Figure 10 shows the rate of 
transfer of energy 

(3.7) 

and the rate of transfer of helicity 

C ( K ,  t ,  = jz t ,  dk,  

where TE and TH respectively represent the right-hand sides of (3.1) and (3.2).  For 
t = 12, n ( k )  and C ( k )  are constant to within 6 %  and 5 %  respectively from k = 4 to 
k = 512. Notice also that the rate of energy transfer into the inertial range has decreased 
by a factor of 2 compared with the non-helical case, which is expected since we know 
that the energy transfer is inhibited by helicity. 



Isotropic three-dimensional turbulence : injuence of helicity 

2 

I I I I 1 1 I I I I I I 

- 

- 

- 

- 

- 

- 

I I I I I I I I I I 1 I 
1 2 4 8 16 32 64 128 256 512 1024 2048 

4 

“ 3  

P 
..In 

w h 

Y, 
2 -,- 
Y 

2 

1 

I I I I I I I I I I I I 

1 2 4 8 16 32 64 128 256 512 1024 2048 
k 

197 



198 J .  C. Andrt and M .  Lesieur 

1 I I I I I - - 
- - 
- 

k 
FIGURE 9. Variation with k of the relative helicity H ( k ) / k E ( k )  for t = 12;  

same conditions as in figure 6. 

As a consequence of the inhibition of energy transfer by helicity we also expect the 
energy catastrophe to be delayed. An analytical study of this phenomenon based on 
(3.1) and (3.2) seems rather complicated. Numerically, the situation is much clearer. 
Figure 11 shows the temporal evolution of energy (uz(t)) and helicity (u(t) .curl u(t)) 
for the above numerical calculation. We have checked that these curves are in fact the 
zero-viscosity limits in the same way as in figure 4 for the non-helical case. The cata- 
strophe time t,, which was CJ(U~(O))&~ (with C, z 5 )  without helicity, is now 
C,/(u2(0))~k, (with C, z 9) when the initial helicity is maximal. We must also notice 
that corresponding to the energy catastrophe there is a helicity catastrophe (onset 
of helicity dissipation at  zero viscosity), which occurs at the same time as the energy 
catastrophe. 
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4. Determination of C ,  and C H :  impossibility of a pure helicity cascade 
Assuming energy and helicity spectra given by (3 .5 )  and (3 .6 ) ,  it is possible to 

calculate the Kolmogorov constants C, and C, as functions of the parameter A. For 
this, we use (3 .5 )  and (3 .6)  to calculate TE and TH.t  Following Kraichnan (1971b), 
we obtain 
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in which the dimensionless functions A(w), B(w) and C ( V )  are given in appendix C. 
The functions QE(w) - ( ~ 2 / $ k 2 )  Q,(v) and Q H ( w )  give the contributions to the total 
energy and helicity transfer across the wavenumber k of triads with lower and middle 
wavenumbers in the ratio w. Q,(v) is the function Q ( w )  of Kraichnan (1971b).  From 
(4 .1)  we see that a true energy cascade (n(k) independent of k) requires k sufficiently 
large so that 

N 

t One might object that (3.5) and (3.6) are no longer valid fork < CET/CH %since the inequality 
(1.3) is violated. But these small k values give a negligible contribution to Q E ,  QE and QH. 
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FIGURE 12. Localness of transfer of energy (QE(w))  and helicity ( Q H ( W ) ) .  

When (4.6) is satisfied, (4.1) and (4.3) imply 

and finally a numerical calculation of the integrals 

jol A(w) v-ldv,  jol C ( v )  v-l dw 

yields C E  = 4.38h3, C H  = 7*07hP. (4.9), (4.10) 

For h = 0.255, C, and CH are respectively equal to  1-76 and 2-84. Note that (4.9) is 
also valid in the nou-helical oase, so that the Kolmogorov constant C, is not modified 
by helicity. In  the inertial range, the relative helicity is then equal to 

H(k)/kE(k) = 1.43k-1(7/~). (4.11) 

Now jo1 c E ( v )  w-l dv = 3-38, 

so that inequality (4.6) gives k 9 kmin = 1.857/6. In  practice, an energy transfer 
constant to within 1 % will be obtained as soon as k > 18.57/s, which gives a maximum 
value of 0.08 for the relative helicity in the inertial range. Figure 12 shows QE(v) 
and QH(v)  with C, and CH given by (4.9) and (4.10). It can be seen that QE(@) is a 
maximum for v = 0.73, while QH(v)  is a maximum for v = 0.425, so that the helicity 
transfer is less local than the energy transfer. This point can be seen more clearly 
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in figure 13, which shows the functions W,(v) and WH(v) introduced by Kraichnan 
(1971 b ) :  

ds 
( 4 ~ 1 2 ) ,  (4 .13)  

as 
W(v) = jvl Q&) s 3 W H ( V )  = lV1 Q H ( S )  y 3 

which represent the fractions of the energy and helicity transfer rates due to triad 
interactions for which the ratio between the lower and the middle wavenumbers is 
greater than v. For instance, to obtain 50 yo of the energy transfer it is necessary to 
consider triads such that v 2 0.37, while one must take triads such that v 2 0-28 to 
obtain 50 % of the helicity transfer. 

It is possible now to show the non-existence of the type (ii) pure helicity cascade 
(see 5 1 )  considered by Brissaud et a,?. (1973b) ,  at any rate within the present frame- 
work of the EDQN theory. Assume an inverse energy cascade towards small wave- 
numbers with no helicity transfer: then the energy and helicity spectra will be functions 
of E and k ,  and will take the form 

E(k)  = C&dk-%, H ( k )  = C;I&k-#, (4 .14) ,  (4 .15)  
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FIGURE 14. Temporal evolution of total energy (u2(t)) and helicity (u(t).curl u(t)) with zero 
initial total helicity; initial helicity and energy spectra defined in § 5:  

Ck being smaller than C& because of inequality (1.3). If we use (4.14) and (4.15) to 
calculate T,(k, t ) ,  we find for nE(k) 

r E ( k )  = XC$ - (Cg/C$) Y ,  (4.16) 

where X and Y are two integrals satisfying Y < X (from numerical evaluation). 
Hence n,(k) is always positive, in contradiction with the hypothesis of an inverse 
energy cascade. The type (ii) cascade cannot therefore occur. 

5. Possible growth of helicity through dissipation 
Unlike the energy spectrum, the helicity spectrum H ( k )  is not restricted to positive 

values. For example in the run corresponding to figure 7, the helicity spectrum takes 
negative values a t  the upper end of the dissipation range (i.e. for k > 104k,) in spite 
of purely positive initial values. These values naturally cannot be presented on figure 7 
since a log-log plot is used (concerning figures 8 b  and 9, these negative values affect 
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wavenumbers which are not represented on the plots and anyway give very small 
values for the compensated spectrum and the relative helicity). Furthermore, the 
total helicity 

HT = jaw H ( k )  dk 

can grow and reach a significant level starting from a zero initial value. Indeed, if one 
starts from an initial helicity spectrum given by 

H ( k ,  0 )  = f kE(k ,  0 )  for k 5 kc, (5.1) 
where kc is a wavenumber chosen such that the total helicity is zero, then the helicity 
dissipation rate d 

- (u(t) . curl u(t))t ,o = - 2v k2H(k, 0 )  dk (5 .2 )  
dt som 

is certainly positive at t = 0. As a numerical illustration of this point, figure 14 shows 
the evolution of total energy and total helicity in the following case: we take for the 
initial energy spectrum E ( k ,  0 )  the energy spectrum obtained at t = 6 in the numerical 
calculation reported in 3 2 .  In  this case the value of k, is found to be 8k,. One can see 
that the total helicity rapidly reaches a value of order unity, then decreases because 
of dissipation at  a rate comparable to the energy dissipation rate. 

6. Conclusion 
The main influence of helicity in neutral isotropic turbulence seems to be the 

inhibition of energy transfer. However, this inhibition occurs in the early stages of 
decay, and disappears with the establishment of an inertial range. The basic spectral 
results, e.g. the Kolmogorov law, are not affected by helicity since the linear cascade 
of helicity implies a relative helicity which tends to zero for large wavenumbers. 

In  fact, though some recent results of Kraichnan (1976) seem to indicate that 
helicity increases the diffusion of a passive scalar by a factor of the order of 20 %, it 
seems likely that helicity is important only in the magnetohydrodynamic context. 
Indeed the study of absolute equilibrium ensembles shows the possibility of inverse 
transfer of energy in this context (Frisch et al. 1975), in contrast to the behaviour for 
neutral turbulence (Kraichnan 1973). Recent numerical results based on EDQN 
theory (Pouquet et al. 1976) and direct numerical simulation of the MHD equations 
(Pouquet & Patterson 1976) have confirmed the important influence of helicity in 
MHD turbulence. 

We should like to thank J. R. Herring for having sent us his unpublished results. 
Thanks are also due ta U. Frisch, J. Ldorat, H. K. Moffatt and A. Pouquet for very 
helpful comments. 

Appendix A. Proof of inequality (2.11) 

enstrophy D ( t )  in the inviscid case: 
From (2 .2 )  one can easily derive the equation for the rate of change of the total 

= ' / / / g  (k2 - p 2 )  (q + x 3 )  Okp,(t) E(p,  t )  E(q,  t )  dk d p  dq. 
dt 2 q 
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By symmetrizing with respect to p and q and by making the change of variable k -+ x 
one finds 

In the case of a constant relaxation time 8,, the last integral on the right-hand side 
of (A 2) is zero since 8,( I - x 2 )  x is odd, and (2.10) follows immediately. 

This is no longer true for the EDQN theory, since the change x+-x changes 
e k p q  into Ovpq with 

In this case, (AZ) becomes 
k' = (p2  + q2 + 2pqX)a. (A 3) 

With ,uk given by (1  A), ,uk increases with k and consequently Okpq( t )  is a decreasing 
function of k .  Notice that if, following Leith (1971), we had taken 

instead of (1.4) [but keeping ,uk as given by (1.5)], 6 k p q ( t )  would still be a decreasing 
function of k .  On the other hand this property is not necessarily satisfied either with 
Orszag's (1970) expression for ,uk, 

or for the test-field model (Kraichnan 1971 a) .  

p k  ( k 3 E ( k ) ) ' 7  (A 6) 

The second integral on the right-hand side of (A 4) is then positive, so thai we have 

Since 8 k p q ( t )  < l / ( ,up  +,up), it  follows that 

Taking the new variable ,us, we have 

Hence, finally, with h = 0255, the inequality (2.11) follows. 

instead of Okpq( t ) ,  (A 4) reduces to 
If we take q5kpq(t) = Otmn(t) ,  where I = sup (k ,  k') ,  m = sup ( p , p ' )  and n = sup (q, q'), 
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Since &,*(t) > t / ( l +  3AtDt), it  follows immediately that 

dD/dt 2 tD2/3( 1 + 3AtD4). (A 12) 

As soon as t 2 6)D-4(0), since D(t)  increases with time (dD/dt 2 O), (A 12) becomes 

D8 
3( 3A + 6-4  

dD/dt B 

(i + vk2) u ( k ,  t ,  t ' )  

Appendix C 
The dimensionless functions A(v) ,  B(v) and C(v)  defined in 3 4 are given by 
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